Matematika

Pertanyaan

integral xpangkat2cos5xdx

1 Jawaban

  • ∫ x² cos 5x dx

    ∫ fg' = fg - ∫ f'g
    f = x² → f' = 2x
    g' = cos 5x → g = -1/5 sin 5x
    ∫ x² cos 5x dx = 1/5 x² sin 5x - ∫ 2/5 x sin 5x dx
                           = 1/5 x² sin 5x - 2/5 ∫ x sin 5x dx

    ∫ fg' = fg - ∫ f'g
    f = x → f' = 1
    g' = sin 5x → g = -1/5 cos 5x
    ∫ x sin 5x dx = -1/5 x cos 5x - ∫ (-1/5 cos 5x)
                        = -1/5 x cos 5x + 1/25 sin 5x
    Jadi
    ∫ x² cos 5x dx = 1/5 x² sin 5x - 2/5 [-1/5 x cos 5x + 1/25 sin 5x] + C
                          = 1/5 x² sin 5x + 2/25 x cos 5x - 2/125 sin 5x + C
                          = 1/125 [sin 5x (25x² - 2) + 10x cos 5x] + C 

Pertanyaan Lainnya